AdaBoost¶
toyml.ensemble.adaboost.AdaBoost
dataclass
¶
AdaBoost(weak_learner: Type[BaseWeakLeaner], n_weak_learner: int = 5, predict_labels_: Optional[list[int]] = None, training_error_rate_: Optional[float] = None, _n: int = -1, _labels: list[int] = list(), _weights: list[float] = list(), _base_clf_labels: list[list[int]] = list(), _weak_learner_predicts: List[Callable[..., Any]] = list(), _alphas: list[float] = list())
The implementation of AdaBoost algorithm.
Examples:
>>> from toyml.ensemble.adaboost import AdaBoost, OneDimensionClassifier
>>> dataset = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]
>>> labels = [1, 1, 1, -1, -1, -1, 1, 1, 1, -1]
>>> ada = AdaBoost(weak_learner=OneDimensionClassifier, n_weak_learner=3).fit(dataset, labels)
>>> print(f"Training dataset error rate: {ada.training_error_rate_}")
Training dataset error rate: 0.0
>>> test_sample = [1.5]
>>> print(f"The label of {test_sample} is {ada.predict(test_sample)}")
The label of [1.5] is 1
References
- Li Hang
- Zhou Zhihua
weak_learner
instance-attribute
¶
weak_learner: Type[BaseWeakLeaner]
The weak learner to be used in the AdaBoost algorithm.
n_weak_learner
class-attribute
instance-attribute
¶
n_weak_learner: int = 5
The number of weak learners to be used in the AdaBoost algorithm.
predict_labels_
class-attribute
instance-attribute
¶
The prediction labels of the training dataset.
training_error_rate_
class-attribute
instance-attribute
¶
The error rate of the training dataset.
fit
¶
Fit the AdaBoost model.
Source code in toyml/ensemble/adaboost.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
predict
¶
Predict the label of the input sample.
Source code in toyml/ensemble/adaboost.py
135 136 137 138 139 140 141 142 143 144 145 146 |
|
toyml.ensemble.adaboost.OneDimensionClassifier
dataclass
¶
OneDimensionClassifier(_sign_mode: SignMode = POS_NEG, _best_cut: float = inf, error_rate_: float = inf, predict_labels_: Optional[list[int]] = None)
Bases: BaseWeakLeaner
Binary classifier with one dimension feature.
Ref: Li Hang, 1 ed, E8.1.3
fit
¶
Fit the one-dimension classifier.
Source code in toyml/ensemble/adaboost.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
predict
¶
Predict the label of the input sample.
Source code in toyml/ensemble/adaboost.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
get_error_rate
¶
get_error_rate() -> float
Get the error rate of the training dataset.
Source code in toyml/ensemble/adaboost.py
202 203 204 205 206 207 208 |
|
get_predict_labels
¶
Get the prediction labels of the training dataset.
Source code in toyml/ensemble/adaboost.py
210 211 212 213 214 215 216 |
|
get_best_cut
¶
get_best_cut(dataset: list[list[float]], weights: list[float], labels: list[int]) -> tuple[SignMode, float, float]
Get the best cut of the training dataset.
Source code in toyml/ensemble/adaboost.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|